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A.1 New positive cases of the COVID-19 infection

This subsection documents the historical time-series features of new positive COVID-19 infection

cases in Japan. It especially focuses on non-stationarity and cyclicality in infection spread.

Figure A1 shows a weekly time series of the confirmed new infection cases (top panel), log of

new infection cases (middle panel), and log changes in infection cases (bottom panel) from the

week of February 16, 2020, to the week of May 9, 2021. The orange shaded areas show the

weeks coinciding with the period during the state of emergency declaration in Japan.1

The non-stationarity in the time series of the number of new infection cases is almost a

certainty. The top panel of Figure A1 shows four peaks in the number of new infection cases,

despite only three states of emergency. This shows that the expected value of the number of

new infection cases tends to increase and decrease stochastically. That is, the time series of the

number of new infection cases follows a non-stationary process.

However, the number of new infection cases seems to be cyclical. Figure A1 shows that

the number of new infection cases decreased, despite no declaration of a state of emergency.

Interestingly, the three peak-to-bottom periods are approximately the same (about a month

and a half).2 This similarity suggests that the decline in new infection cases tends to continue

for approximately a month and a half, regardless of whether a state of emergency has been

declared.

1In Japan, a state of emergency was declared three times during the sampling period: from April 7th to May
25th 2020, from January 8th to March 21st 2021, and from April 25th 2021 onward. The legal basis for the
policy responses of the governors of the prefectures subject to the emergency measures, is the “Act on Special
Measures for Pandemic Influenza and New Infectious Diseases Preparedness and Response.” Under the first
declaration of emergency, prefectural governors were able to request people to refrain from going out of their
homes, and to request and instruct facility administrators of schools, social welfare facilities, and entertainment
venues to restrict the use of those facilities, in accordance with the provisions of Article 45 of the Act. However,
the Act does not stipulate any penalties for disobeying the instructions under Article 45, and Japan’s curfew
was extremely loose compared to the lockdowns in China, United States, and many European countries. On
February 13th 2021, during the second declaration of the state of emergency, the Act has been amended to allow
the prefectural governor to instruct the facility manager regarding restrictions. In addition, based on the newly
established Article 79, facility managers who do not comply with the order will be subject to a fine of up to
300,000 yen.

2The first peak-to-bottom period is five weeks: from the week of April 12, 2020, to the week of May 17, 2020.
The second peak-to-bottom period is seven weeks: from the week of August 2, 2020, to the week of September
20, 2020. The third peak-to-bottom period is seven weeks: from the week of January 10, 2021, to the week of
February 28, 2021.
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Figure A1: Weekly new positive cases of COVID-19 infection in Japan

Notes: The orange shaded areas show the weeks coinciding with the period during the state of emergency

declaration in Japan. The sample period is the week of February 16, 2020, to the week of May 9, 2021.

Figure A2 shows a weekly time series of log changes in infection cases from the week of

March 1, 2020, to the week of May 9, 2021 in Tokyo and Osaka.3 The infection spread in each

prefecture can be differentiated into spread at the same or different times. As seen in the figure,

there appears to be a common trend in the infection cases across the two prefectures. We notice

that two prefectures have experienced a sustained decrease in the infection cases during the

declaration of the state of emergency, and a persistent increase in cases after the declaration

was lifted. On the other hand, there are regional differences in the infection spread. The growth

rate of new cases in the two prefectures can often be seen to temporarily diverge.

A.2 Human mobility index

We measure the movement of people using Google’s mobility indices. The weekly mobility index

we use matches the median of each week of the daily mobility index, to eliminate the effects

3Following Hoshi et al. (2021), we set the value of the log levels of new infection cases to −1 for observation
with zero weekly cases
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Figure A2: Weekly log changes in new positive cases of COVID-19 infection in Tokyo and Osaka

Notes: The orange shaded areas show the weeks coinciding with the period during the state of emergency

declaration in Japan. The sample period spans from the week of March 1, 2020, to the week of May 9, 2021.

Different colors represent different prefectures, where the navy blue is for Tokyo and the dark orange is for Osaka.

of holidays as much as possible. These mobility indices represent the rate of change in human

mobility for six categories: retail & recreation, grocery & pharmacy, parks, transit stations,

workplaces, and residential spaces.

First, we present the contemporaneous relationships among the mobility indices during the

sample period. Table A1 reports the Pearson’s correlation coefficients between two mobility

indices. From Table A1, the six mobility indices are highly correlated. In particular, retail &

recreation, transit stations, and workplaces are strongly intercorrelated, and residential shows

a strong negative correlation. Hence, there are common components that help summarize the

characteristics of these highly correlated variables.

To capture the common components among the mobility indices, we consider a model to

summarize the time-series characteristics of these indices. Specifically, we assume that the

representative measure for human mobility as the common factor of individual mobility indices,

significantly drives the time-series patterns of the indices. Let Mt = (m1t, · · · ,m6t)
′
be a six-
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Table A1: Correlation between the Google mobility indices

[1] [2] [3] [4] [5]

[1] Retail & recreation
[2] Grocery & pharmacy 0.528
[3] Parks 0.292 0.516
[4] Transit stations 0.857 0.293 0.200
[5] Workplaces 0.394 -0.093 0.022 0.751
[6] Residential -0.749 -0.148 -0.108 -0.948 -0.854

Notes: This table shows the Pearson’s correlation coefficient between the Google mobility indices from the week

of February 16, 2020, to the week of May 9, 2021.

by-one vector of the mobility indices (retail & recreation, grocery & pharmacy, parks, transit

stations, workplaces, residential). We consider the following factor model:

Mt = λyyt + λ1 + vt, (1)

where yt is a single common factor, vt is a six-by-one vector of mean-zero idiosyncratic com-

ponents, and λy, λ1 are six-by-one vectors of slope and intercept coefficients, respectively. We

impose the first element of coefficient vector λy to be equal to one, to endow the factor yt with

interpretable units and signs, where one unit increase in yt reflects an increase in the mobility

index with retail & recreation by one.

We adopt the principal component (PC) approach to measure the representative measure

for human mobility yt. First, we calculate the first PC, pct, using the standardized (mean-zero

and unit variance) six mobility indices. Next, we regress human mobility of retail & recreation

m1t on pct and the constant term:

m1,t = δ1,pcpct + δ1,1 + ν1,t. (2)

where ν1,t is an error term. We can then compute the representative measure for human

mobility, satisfied with the restriction imposed in the factor model as yt = δ̂1,pcpct where δ̂1,pc

is an ordinary least squares (OLS) estimate of the parameter δ1,pc in Equation (2). Since the

representative measure for human mobility yt is based on PC, it is a composite index of the

mobility indices. 　

Table A2 shows the empirical results for the factor model (1) by OLS regression. From the
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table, the regression coefficients of four indices (retail & recreation, transit stations, workplaces,

and [negative] residential) on the composite index are statistically significant at the 1% level.

Moreover, the composite index explains most of the mobility index variations with the retail &

recreation, transit stations, and residential categories, although the mobility indices with the

grocery & pharmacy and parks categories are explained to a lesser degree, given the large share

explained by the idiosyncratic components. Thus, the composite index as the representative

measure for human mobility summarizes the common characteristics among mobility indices.

Table A2: Factor model for the Google mobility indices

Dependent Retail & Grocery & Parks Transit Workplaces Residential
variable: recreation pharmacy stations

λy 1 0.17 0.47 1.34 0.92 -0.42
(0.11) (0.06) (0.36) (0.05) (0.15) (0.02)

λ1 -0.138 0.001 -0.045 -0.254 -0.131 0.066
(0.007) (0.005) (0.023) (0.003) (0.007) (0.002)

R-squared 0.77 0.16 0.10 0.96 0.57 0.90

Notes: This table shows the results for the ordinary least squares regression (1) of the mobility index with each

column category on the composite index of mobility and constant term. We obtain the composite index by scaling

and signing the first principal component calculated using the Google mobility indices to the index for retail &

recreation. The sample period is the week of February 16, 2020, through the week of May 9, 2021. The numbers

in parentheses are Newey & West (1987) heteroskedasticity and autocorrelation robust standard errors for least

squares with a four-week lag truncation.

Each panel in Figure A3 displays each mobility index time series and the composite index.

We graphically confirm that the composite index tracks the common time-series patterns among

the mobility indices, during the sample period.

Each panel of Figures A4 and A5 displays each mobility index time series and the composite

index in Tokyo and Osaka, respectively.

A.3 Comparison of in-sample forecasting accuracy among a historical aver-

age, AR model, and VAR model for the log-changes in new infection

cases

We assess multistep-ahead forecasts, computed by iterating forward the VAR model (10) in

the main text. It examines current-, two-, four-, and eight-week forecast horizons. The H-

week-ahead forecast is computed by
H∑

h=0

∆π̂t+h where ∆π̂t+h is the h-week-ahead predictor of
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Figure A3: Weekly Google mobility index in Japan

Notes: The dotted line (left-hand scale) indicates the Google mobility index with each category. The solid

line (right-hand scale) indicates the composite index of mobility. We obtain the composite index by scaling and

signing the first principal component calculated using Google mobility indices to the index for retail & recreation.

The orange shaded areas show the weeks coinciding with the period during the state of emergency declaration in

Japan. The sample period is the week of February 16, 2020, through the week of May 9, 2021.
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Figure A4: Weekly Google mobility index in Tokyo

Notes: The dotted line (left-hand scale) indicates the Google mobility index with each category. The solid

line (right-hand scale) indicates the composite index of mobility. We obtain the composite index by scaling and

signing the first principal component calculated using Google mobility indices to the index for retail & recreation.

The orange shaded areas show the weeks coinciding with the period during the state of emergency declaration in

Japan. The sample period spans from the week of February 16, 2020, to the week of May 9, 2021.
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Figure A5: Weekly Google mobility index in Osaka

Notes: The dotted line (left-hand scale) indicates the Google mobility index with each category. The solid

line (right-hand scale) indicates the composite index of mobility. We obtain the composite index by scaling and

signing the first principal component calculated using Google mobility indices to the index for retail & recreation.

The orange shaded areas show the weeks coinciding with the period during the state of emergency declaration in

Japan. The sample period spans from the week of February 16, 2020, to the week of May 9, 2021.

∆πt+h conditional on the information available at time t− 1 using the forecasting models. As

a comparison, we compute forecasts for a univariate AR with three-week lags and a historical

average. Table A3 shows the mean square forecast error (MSE) and the percentage reduction

in MSE for each of the forecasting models, relative to the historical average.

Accordingly, the predictions of the VAR model improve over the AR model and the historical

average for any forecast horizon. Hence, the composite index of mobility contains valuable

information for predicting the number of new infection cases.

The AR model forecast does not work adequately, especially for longer horizons. The upper

four panels in Figure A6 shows the prediction values of the log changes in the new COVID-19

infection cases over the current (two, four, and eight) week(s) using the estimated parameters

in the AR model. Although it has good predictive power in the shorter horizon, the predictive

power of the AR model in the longer horizon is relatively poor.
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Table A3: Prediction comparison for the log changes in infection cases

Horizon (H) MSE1 MSEAR R2
AR MSEV AR R2

V AR

0 0.129 0.083 35.7 0.054 57.8
2 0.818 0.629 23.1 0.363 55.6
4 1.581 1.507 4.7 0.847 46.4
8 2.190 2.739 -25.1 2.015 8.0

Notes: This table shows the results from predicting the log changes in infection cases from the last week

through the current (following two, four, and eight) week(s), conditioned on the information at the last week.

MSE1,MSEAR, and MSEV AR show the mean square forecast error (MSE) for the historical average, autoregres-

sive (AR), and vector autoregressive model (VAR)forecasts, respectively. R2
AR(= 100 × (1 − MSEAR/MSE1))

and R2
V AR(= 100 × (1 − MSEV AR/MSE1)) measure the percentage reduction in MSE for the AR and VAR

models, respectively, relative to the historical average. We set the lag length to three weeks in the AR and VAR

estimation. Estimation samples in the AR and VAR model span the week of March 1, 2020, through the week

of May 9, 2021. The forecasts are computed over the sample period depending on data availability of the actual

H-week-ahead log changes in infection cases.

In contrast, the VAR model forecast works adequately over the sample period. The lower

four panels in Figure A6 shows the prediction values of the log changes in the new COVID-19

infection cases over the forecast horizon using the estimated parameters in the VAR model. The

predicted values explain the actual time-series pattern from March 2020 to May 2021, though

the predictions after the state (exit) of (from) emergency declaration in early April (June)

2020 are slightly poor. This result suggests that the proposed VAR model simply and thriftily

captures the dynamics of the log changes in new infection cases.

A.4 Estimation of the COVID-19 infection–mobility trade-off in Japan using

each Google mobility index

As well as the benchmark, we estimate the following specification of the infection–mobility

trade-off:

∆πt+1 = κyt−1 + ι+ ϵπ,t+1. (3)

For human mobility yt, we use the Google mobility index with each category (retail & recreation,

grocery & pharmacy, parks, transit stations, workplaces, residential) and the composite index

of mobility. The sample period spans from the week of February 23rd, 2020, to the week of May

2nd, 2021.

Table A4 reports estimation results for the infection–mobility trade-off (3). The coefficients κ

describing the response of the one-week-ahead log changes in infection cases, to the one-week lag
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Autoregressive model with three-week lags

Vector autoregressive model with three-week lags

Figure A6: Prediction comparison for the log changes in infection cases

Notes: The solid line indicates the actual log changes in the new positive COVID-19 infection cases from the last

week through the current (following two, four, or eight) week(s). The dotted line indicates the prediction values

of the log changes, conditioned on the information at the last week; it is calculated using the parameter estimates

of the autoregressive (AR) or vector autoregressive (VAR) model. We set the lag length to three weeks in the

AR and VAR estimations. Dark and light yellow areas respectively denote ±1 and ±2 mean squared prediction

error bands, calculated using 1,000 bootstrap samples. The orange shaded areas show the weeks coinciding with

the period during the state of emergency declaration in Japan. Estimation samples in the AR and VAR models

span from the week of March 1, 2020, to the week of May 9, 2021.
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Table A4: Estimation results for the COVID-19 infection–mobility trade-off in Japan

Dependent Retail & Grocery & Parks Transit Workplaces Residential Mobility
variable: recreation pharmacy stations CI

κ 2.67 4.97 0.76 2.33 1.76 -6.22 3.28
(0.60) (1.33) (0.60) (0.41) (0.90) (1.43) (0.54)

ι 0.46 0.08 0.12 0.68 0.32 0.50 0.09
(0.11) (0.06) (0.08) (0.12) (0.13) (0.11) (0.05)

Adj-R2 0.38 0.18 0.04 0.40 0.18 0.30 0.43

Notes: This table shows the ordinary least squares regression results (3) of the log changes in infection cases on

the mobility index with each column category and constant term. Mobility CI denotes the composite index of

mobility. We obtain the composite index by scaling and signing the first principal component, calculated using

Google mobility indices, to the index for retail & recreation. The sample period spans from the week of February

23, 2020, to the week of May 2, 2021. The numbers in parentheses are Newey & West (1987) heteroskedasticity

and autocorrelation robust standard errors for least squares with a four-week lag truncation.

of human mobility, are positive and statistically significant for human mobility under the retail

& recreation, grocery & pharmacy, transit stations, and workplaces categories. The coefficient

is negative and statistically significant for human mobility under the residential category; the

relationship is statistically insignificant for human mobility under the parks category.

Further, there are some differences in the explanatory power of the infection Phillips curve

among the categories of the mobility index. In particular, the specification using the mobility

index, especially with the parks and workplaces categories, has a lower R-squared than that

using the mobility index with the retail & recreation, transit station, and residential categories.

Thus, human mobility in parks and workplaces may be limited in explaining the time-series

pattern of COVID-19 infection cases. These results are consistent with Nagata et al. (2021),

where the mobility changes in nightlife and residential places are significantly associated with

COVID-19 infection cases. Meanwhile, the association of mobility changes in workplaces is

statistically insignificant. Moreover, the specification using the composite index of mobility has

a higher R-squared than that using individual mobility indices. Hence, using the composite

index improves the fit of the infection–mobility trade-off, by removing possible measurement

errors for human mobility in individual mobility indices.
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A.5 VAR-IV model

In this subsection, we describe the derivation of the VAR–IV model from a simultaneous equa-

tions system of infection-mobility trade-off and mobility demand.

We consider the following simultaneous equations system;

∆πt = ζ
′
Wt + ξa,t + ϕξmd,t, (4)

yt = γ
′
Wt + b∆πt + ξmd,t, (5)

where Wt is a vector of control variables comprising the one- to three-week lags of yt and ∆πt

and a constant. ξa,t with a mean of zero and a variance of σ2
a represents an anxiety shock.

ξmd,t with a mean of zero and a variance of σ2
md represents a mobility demand shock. ξa,t and

ξmd,t are assumed to be serially uncorrelated and independent each other. Equation (4) is a

variant of the infection–mobility trade-off (Equation (15) in main manuscript) conditioning on

the information at time t − 1. ξa,t + ϕξmd,t reflects the stochastic term of the new infection

production, that is, unexpected changes in new infection cases at time t. Equation (5) is the

mobility demand (Equation (16) in main manuscript).

We can express the structural VAR representation as follows;

A(L)Xt = a0 +Θaξa,t +Θmdξmd,t, (6)

where Θa = (Θ1a,Θ2a)
′
= (1, b)

′
,Θmd = (Θ1md,Θ2md)

′
= (ϕ, 1 + bϕ)

′
.

To identify the model, we use an external instrument from the VAR system that captures

surprise variation in the new infection cases that people perceive as the change in infection risk.

We can identify b under the premise that there is an instrument zt for the anxiety shock that

satisfies the following conditions:

E[ξa,tzt] ̸= 0, and (7)

E[ξmd,tzt] = 0. (8)

Thus, we estimate the regression (5) by an IV estimation to obtain the estimate of b. Given

the estimate of b, we can identify the mobility demand shocks as the residuals obtained from

the IV regression. Thus, we estimate the regression (18) in the main manuscript to obtain the
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estimate of Θmd.

A.6 The information content of the log level of weekly cases for the dynamics

of human mobility in the VAR model

We consider a model referring to the specification by Chernozhukov et al. (2021) and Hoshi et al.

(2021) that adds log change and log level of weekly cases at time t, ∆πt and πt, respectively, to

the equation for the human mobility in the reduced-form VAR model;

yt = b1∆πt + b2πt + γ
′
Wt + ẽy,t. (9)

where Wt is a vector of control variables comprising the one- to three-week lags of yt and ∆πt

and a constant, and ẽy,t is the error term orthogonal to ∆πt and πt. We estimate the regression

(9) with and without ∆πt and πt as independent variables by an OLS, and compare the fit of

the models.

Table A5 shows the empirical results. In the column (1), neither log changes nor log levels

in infection cases at week t are included in the explanatory variables in Equation (9), i.e.,

the equation for the human mobility in the reduced-form VAR model. In column (2), the

independent variable in the equation is the log changes in infection cases, i.e., the specification of

the mobility demand in Equation (16) in the main manuscript. In column (3), the independent

variable in the equation is the log levels in infection cases. In column (4), the independent

variables in the equation are both the log changes and the log levels in infection cases. As

shown in the column (1) of the Table, we find that about 70% of the variation in the composite

index of mobility can be explained by the lag values of log changes in the new infection cases

and the mobility index. As shown in the column (2) of the Table, the coefficient of the growth

rate of cases at time t is statistically positive and significant, it does not have much additional

explanatory power. As shown in the columns (3) and (4) of the Table, the coefficient of the log

level of cases at time t is not statistically significant. This implies that adding the log level of

weekly cases in our VAR model, plays a limited role in explaining the dynamics of the composite

index of mobility.
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Table A5: OLS Estimation results for the composit index of mobility with/without the log level
of the new infection cases

Dependent variable: Mobility CI
(1) (2) (3) (4)

∆πt - 0.027 - 0.025
- (0.013) - (0.014)

πt - - -0.003 -0.002
- - (0.004) (0.004)

Adj-R2 0.693 0.697 0.691 0.693

Notes: The dependent variable is the composite index of mobility. In column (1), both log changes and log levels

in infection cases at week t are not included in the explanatory variables. In column (2), the independent variable

is the log changes in infection cases. In column (3), the independent variable is the log levels in infection cases. In

column (4), the independent variables are both the log changes and the log levels in infection cases. The constant

and one- to three-week lags of log changes in infection cases, and the composite index of mobility are included

as control variables in the linear regression model. We estimate the regression by ordinary least squares. The

numbers in parentheses are White (1980) heteroskedasticity-robust standard errors. Coefficients and standard

errors for the control variables are not reported. The sample period spans from the week of March 1, 2020, to

the week of May 9, 2021.

A.7 The search volume of “感染者数” in Google

Figure A7 plots the weekly log changes in the search volume of the Japanese term “感染者数”

(number of infected individuals in English) over time.4

A.8 Robustness check and sensitivity analysis

In this subsection, we re-estimate the model under several alternative settings to examine the

robustness and sensitivity of our empirical analyses.5

Additional principal component for the Google mobility indices

We examine the robustness of the representative measure of human mobility. Although we

assume that the time-series patterns of the Google mobility indices are significantly driven by

their first PC, one may suspect a misspecification of our model for new infection cases and

human behavior, due to the possibility that the other PCs also contain informational content

about beneficial infection dynamics. Thus, we describe additional results that show that the

first PC can sufficiently summarize the common features of the mobility indices using the factor

4We retrieved the search volume data from Google Trends (https://trends.google.co.jp/trends/?geo=JP)
on June 1, 2021.

5Detailed results of the following exercises can be obtained from the corresponding author upon request.
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Figure A7: Weekly log changes in the search volume of “感染者数” (number of infected indi-
viduals in English) in Google

Notes: The orange shaded areas show the weeks coinciding with the period during the state of emergency

declaration in Japan. The sample period spans from the week of March 1, 2020, to the week of May 9, 2021.

model, and the additional PC is limited in explaining the infection dynamics.

One way to justify the assumption that the number of common factors is equal to one is to

check the information criteria for determining the number of factors. Specifically, we use the

information criteria proposed by Ahn & Horenstein (2013), which suggests that the preferred

model is the one that maximizes the information criteria, defined as follows:

IC(k) =
log(SSR(k − 1))/ log(SSR(k))

log(SSR(k))/ log(SSR(k + 1))
, (10)

where SSR(k) is the sum of squared residuals, vki,t = mi,t − (λk
i,y1y1,t + · · ·+ λk

i,ykyk,t + λi,1) for

i = 1, · · · , 6 given the number of factors, k, such that

SSR(k) =
1

6T

T∑
t=1

6∑
i=1

vk2i,t . (11)
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Table A6: The number of common factors underlying the Google mobility indices

Number of factors (k) 0 1 2 3 4

SSR(k) 64.48 28.43 12.61 3.02 0.72
IC(k) n.a. 0.94 0.58 -0.68 -11.97

Notes: SSR(k) denotes the sum of squared residuals, vki,t = mi,t−(λk
i,y1y1,t+ · · ·+λk

i,ykyk,t+λi,1) for i = 1, · · · , 6
given the number of factors, k, defined as Equation (11). IC(k) denotes the Ahn & Horenstein (2013) information

criteria given the number of factors, k, defined as Equation (10). The sample period spans from the week of

February 16, 2020, to the week of May 9, 2021.

Table A6 reports the calculated sum of squared residuals SSR(k) and the Ahn & Horenstein

(2013) information criteria IC(k) for each number of factors k. The criteria suggest that we

should adopt one common factor in summarizing the common features of the mobility indices

using the factor model.

Second, although the inclusion of additional PCs increases explanatory power regarding

mobility indices, it does not mean they are useful as a representative time-series measure for

human mobility. Table A7 reports the empirical results for the factor model, including the

two common factors estimated in the same manner as the benchmarks. In particular, from

the table, the second PC strongly captures the characteristics of grocery & pharmacy and

parks. Given that the mobility indices of these categories is limited in explaining the infection–

mobility trade-off reported in Table A4, the second PC is unlikely to significantly capture the

workings of the human mobility associated with the spread of infection. In fact, we extend

the regression of the infection–mobility trade-off such that the second PC also affects the log

changes in infection cases, confirming that the second PC has little explanatory power regarding

the rate of new infection cases. Each panel in Figure A8, which displays the time series of each

mobility index and the second composite index, shows that a large part of the fluctuations of

the second PC is a significant spike, because of two long vacations: The former is the summer

vacation in the week of August 9, 2020, and the latter is the winter vacation in the week of

December 27, 2020. Although transitory changes in mobility during the long vacations may

have affected new infection cases, such changes are not appropriate indicators to capture the

time-series characteristics of the representative measure for human mobility, when modeling the

intertemporal relationships between human mobility and new infection cases.

Next, we examine the information content of the second PC for the infection dynamics.
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Table A7: Two factors model for the Google mobility indices

Dependent Retail & Grocery & Parks Transit Workplaces Residential
variable: recreation pharmacy stations

λy1 1 0.17 0.47 1.34 0.92 -0.42
(0.12) (0.04) (0.27) (0.04) (0.14) (0.01)

λy2 1 1.32 4.10 -0.58 -2.32 0.47
(0.50) (0.14) (0.78) (0.18) (0.58) (0.04)

λ1 -0.138 0.001 -0.045 -0.254 -0.131 0.066
(0.008) (0.002) (0.013) (0.002) (0.008) (0.001)

R-squared 0.82 0.81 0.63 0.97 0.83 0.98

Notes: This table shows the results for the ordinary least squares regression of the mobility index, with each

column category on the composite indices of mobility constructed from the first and second principal components

and constant term. We obtain the composite indices by scaling and signing the first and second principal

components calculated using Google mobility indices to the index for retail & recreation. The sample period

spans from the week of February 16, 2020, to the week of May 9, 2021. The numbers in parentheses are Newey

& West (1987) heteroskedasticity and autocorrelation robust standard errors for least squares with a four-week

lag truncation.

Table A8 shows the forecasting assessment of multistep-ahead forecasts, computed by iterating

forward the three-variable VAR model comprising the log changes in the infection cases and

the first and second composite indices for mobility, conducted in the same manner as the

benchmarks. Four panels in Figure A9 show the prediction values of the log changes in the new

infection cases, using the estimated parameters in the three-variable VAR model.

While the inclusion of the second composite index has contributed to some improvement

in the model—specifically, reducing the prediction error—it has not significantly impacted the

future movement of new infection cases. Comparing the results in Tables A3 and A8, the three-

variable VAR model has a somewhat better prediction accuracy regarding in-sample prediction

than the bivariate VAR model. However, comparing Figures A6 and A9, it is not apparent that

the three-variable VAR model predictions have changed significantly from the bivariate VAR

model predictions. Thus, although the additional PC contributed to reducing the prediction

error of the VAR model, it does not change the dynamics of the VAR model. That is, the

inclusion of the second composite index in the time-series model is not expected to be significant

in analyzing the dynamic causal relationship between the number of infection cases and human

mobility.

Finally, we conduct a sensitivity analysis, which includes the second composite index in our

macroeconometric model. Specifically, we rerun the VAR model, including one- to three-week
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Figure A8: Weekly Google mobility index and the second composite index in Japan

Notes: The dotted line (left-hand scale) indicates the Google mobility index with each category. The solid line

(right-hand scale) indicates the second composite index of mobility. We obtain the second composite index by

scaling and signing the second principal component, calculated using Google mobility indices, to the index for

retail & recreation. The orange shaded areas show the weeks coinciding with the period during which the state

of emergency was declared in Japan. The sample period spans the week of February 16, 2020, to the week of

May 9, 2021.

lags of the second composite index as exogenous variables. As expected, we confirm that the

model produces, quantitatively and qualitatively, results that are similar to the benchmark

results.

Assumption of epidemiological rigidity

We check the robustness for the empirical assessment of the infection–mobility trade-off based

on the assumption of epidemiological rigidity. In particular, we assume epidemiological rigidity

such that when infection increases due to increased mobility, it takes two weeks for the disease

to develop under the benchmark specifications. One may attribute the sensitivity of the results

to different settings for the rigidity because it may not take much time for the increased mobility

to affect the spread of new infections. Thus, to consider the possibility that increased mobility
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Table A8: Prediction comparison for the log changes in infection cases

Horizon MSE3varV AR R2
3varV AR

0 0.049 61.7
2 0.329 59.8
4 0.781 50.6
8 1.852 15.4

Notes: This table shows the results of predicting the log changes in infection cases from the last week through

the current and the following two, four, and eight weeks conditioned on the information at the last week.

MSE3varV AR shows the mean square forecast error (MSE) for the three-variable vector autoregressive (VAR)

model forecast. R2
3varV AR(= 100 × (1−MSE3varV AR/MSE1)) measures the percent reduction in the MSE for

the three-variable VAR model relative to the historical average. We set the lag length to three weeks in the

three-variable VAR estimation. Estimation samples in the three-variable VAR model span from the week of

March 1, 2020, to the week of May 9, 2021. The forecasts are computed over the sample period, depending on

data availability of the actual H-week-ahead log changes in infection cases.

may increase the new infection cases even after one week, we extend the regression of the

infection–mobility trade-off, such that human mobility in period t also affects the log changes

in infection cases during the period t+ 1:

∆πt+1 = κ1yt + κ2yt−1 + ι+ ϵπ,t+1. (12)

Along with the benchmark case in Equation (3), we use the Google mobility index with each

category (retail & recreation, grocery & pharmacy, parks, transit stations, workplaces, and

residential) and the composite index of mobility for human mobility yt. Table A9 reports the

estimation results for the extended infection–mobility trade-off in Equation (12).

Table A9 shows that our empirical assessment regarding the infection–mobility trade-off is

most robust to the possibility that increased mobility may increase the new infection cases, after

just one week. In particular, we confirm that the human mobility indices with transit stations

and residential categories, and the composite index of mobility in week t, do not statistically

contribute to the increase in the new infection cases in week t + 1. This result suggests that

our assumption of epidemiological rigidity in the benchmark model is realistic. We also confirm

that the mobility in parks and workplaces is limited in explaining the time-series pattern of

COVID-19 infection cases. Moreover, the specification using the composite index of mobility

has a higher R-squared than that using individual mobility indices.

Note that there is a slight difference in the benchmarks. Regarding the retail & recreation
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Three-variable vector autoregressive model with three-week lags

Figure A9: Prediction of the log changes in infection cases using a three-variable vector autore-
gressive model

Notes: The solid line indicates the actual log changes in new positive COVID-19 infection cases from the last

week to the current (following two, four, and eight) week(s). The dotted line indicates the prediction values of the

log changes, conditioned on the information at the last week. It is calculated using the parameter estimates of the

three-variable vector autoregressive (VAR) model. We set the lag length to three weeks in the VAR estimation.

Dark and light yellow areas denote ±1 and ±2 mean squared prediction error bands, calculated using 1,000

bootstrap samples, respectively. The orange shaded areas show the weeks coinciding with the period during the

state of emergency declaration in Japan. Estimation samples in the three-variable VAR model span from the

week of March 1, 2020, to the week of May 9, 2021.

and grocery & pharmacy categories, the mobility in week t contributes to a statistically signif-

icant increase in new infection cases in week t+ 1. In particular, the explanatory power of the

model on the new infection cases, using the mobility index with the grocery & pharmacy cat-

egory, has increased to a reasonable degree. Although we cannot explain why the explanatory

power of the new infection rate increases only for a certain human mobility category, human

mobility in the grocery & pharmacy category can explain the time-series pattern of the new

infection cases.
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Table A9: Estimation results for the extended COVID-19 infection–mobility trade-off in Japan

Dependent Retail & Grocery & Parks Transit Workplaces Residential Mobility
variable: recreation pharmacy stations CI

κ1 1.36 4.86 0.15 0.25 0.63 -0.79 0.53
(0.55) (1.09) (0.39) (0.59) (0.72) (1.74) (0.89)

κ2 1.54 2.40 0.65 2.13 1.57 -5.64 2.86
(0.79) (1.19) (0.51) (0.48) (0.63) (1.15) (0.63)

ι 0.49 0.09 0.12 0.70 0.38 0.51 0.09
(0.11) (0.05) (0.08) (0.14) (0.16) (0.13) (0.05)

Adj-R2 0.39 0.30 0.02 0.39 0.19 0.29 0.42

Notes: This table shows the results for the ordinary least squares regression (12) of the log changes in infection

cases on the mobility index, with each column category and constant term. Mobility CI denotes the composite

index of mobility. We obtain the composite index by scaling and signing the first principal component, calculated

using Google mobility indices, to the index for retail & recreation. The sample period is the week of February 23,

2020, through the week of May 2, 2021. The numbers in parentheses are Newey & West (1987) heteroskedasticity

and autocorrelation robust standard errors for least squares with a four-week lag truncation.

VAR settings

First, we check the sensitivity of the results to the lag length of the VAR model. In applications

using the VAR model with long-run restrictions, one may attribute the sensitivity of the results

to minor specification changes that are expected if identification is weak. In particular, when

long-run restrictions are used to identify the VAR model, the lag length of VAR plays a role

in identifying restrictions.6 Even when we use the lag length of the VAR model from one week

to five weeks, the models generate, qualitatively and quantitatively, results that are similar to

those of a benchmark specification.

Second, we perform exercises incorporating measures for the strength of the government’s

reaction to the pandemic into the system. Specifically, we rerun the VAR model, including the

current and one- to three-week lags of log changes of Oxford’s Stringency Index, as exogenous

variables. Surprisingly, none of the exercises changed the qualitative nature of the results.

Third, we perform exercises to incorporate some event dummies into the system. Specifically,

we construct two long vacation dummies. The summer vacation dummy is set to one at the week

of August 9, 2020, and zero elsewhere. The winter vacation dummy is set to one at the week of

December 27, 2020, and zero elsewhere. It may not be appropriate to include the winter vacation

6See Faust & Leeper (1997) for details.
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dummy as a control variable, due to the possibility of losing useful information regarding the

identification of structural shocks pertaining to the Japanese people, who seemed to change

their mobility patterns during the winter vacation at the end of 2020 (The following week, the

Japanese government declared a second state of emergency, on January 7, 2021. ). Nevertheless,

the model produced quantitatively similar results for impulse response functions. However, the

historical decomposition due to structural shocks around January 2021, was different from the

benchmark, because the significant drop in the permanent shock at the week of December 27

disappeared in the alternative model.
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